US009053199B2

a2 United States Patent 10) Patent No.: US 9,053,199 B2
Getzin (45) Date of Patent: Jun. 9, 2015
(54) UNIQUELY IDENTIFYING SCRIPT FILES BY 8,396,920 B1* 3/2013 Pupiusetal. ... 709/203
APPENDING A UNIQUE IDENTIFIER TO A 8,484,373 B2* 7/2013 Grieve . 709/238
URL 2003/0182357 Al* 9/2003 Chessetal.ccoevnene. 709/203
2007/0124693 Al 5/2007 Dominowska et al.
. 2008/0177859 Al* 7/2008 Nickersonc....... 709/217
(75) Inventor: Jeffrey Getzin, Boonton, NJ (US) 2011/0055314 Al* 3/2011 Rosenstein etal. 709/203
2011/0055683 Al* 3/2011 lJiang 715/234
(73) Assignee: Google Inc., Mountain View, CA (US) 2012/0036264 Al* 2/2012 Jiangetal. 709/226
2012/0096058 Al* 4/2012 Mameri et al. 707/827
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 OTHER PUBLICATIONS
U.S.C. 154(b) by 670 days. Al Zabir, Omar; “Automatic JS, CSS Versioning to Update Browser
Cache when Files are Changed”; Jun. 11, 2013; CodeProject.com;
(21) Appl. No.: 13/414,109 pp. 1-10.*
(22) Filed: Mar. 7, 2012 * cited by examiner
(65) Prior Publication Data . .
Primary Examiner — Scott Baderman
US 2013/0238970 Al Sep. 12,2013 Assistant Examiner — Asher Kells
(51) Int.ClL SS})) Attorney, Agent, or Firm — McDermott Will & Emery
GO6F 17/00 (2006.01)
GO6F 17/30 (2006.01) 57 ABSTRACT
(52) US.CL 7
CPC oo GO6F 17/3089 (2013.01) Described herein are techniques related to uniquely identify-
(58) Field of Classification Search ing script files. This Abstract is submitted with the under-
CPC e GO6F 17/3089 standing that it will not be used to interpret or limit the scope
See application file for complete search history. and meaning of the claims. A script file repository includes
one or more script files that have unique identifiers and
(56) References Cited optionally version numbers. A computing device accesses a
web document that references a script file using the unique
U.S. PATENT DOCUMENTS identifier/version number.
6,249,844 B1* 6/2001 Schlossetal. 711/122
RE39,184 E * 7/2006 Schlossetal. 711/122 26 Claims, 5 Drawing Sheets
400
402
[ACCESS WEB DOCUMENT r\J

406

OBTAIN
SCRIPT FILE

YES
Y

RECOGNIZE

USING UNIQUE
LOCATION NO IDENTIFIER/
N SRC VERSION?

ATTRIBUTE

404

OBTAIN UNIQUE IDENTIFIER/VERSION FROM
WEB DOCUMENT

412

e

NO

SCRIPT FILE IN
COMPUTING
DEVICE?

416

414
OBTAIN SCRIPT

FILE FROM
COMPUTING
DEVICE USING

UNIQUE

IDENTIFIER/

VERSION

YES—»~

418

OBTAIN SCRIPT FILE FROM REMOTE REPOSITORY
USING UNIQUE IDENTIFIER/VERSION

US 9,053,199 B2

Sheet 1 of 5

Jun. 9, 2015

U.S. Patent

—]

) DbE

TOT
(S)3114 1dI¥DS
|

oIt
(S)3114 LdI1¥DS

80T
195VYHO1S

¥3/41LN3al
ANDINN
/3714 1d19DS

711
(S)NOISHIA/aIN

90T 31NAON
ONIONIddV

v0T 3INAOW
ONINOISSY

20T IINAON
ONIIDIHD
1d140S

AdOLISOd3d 3114 1dI¥OS

00l —

U.S. Patent Jun. 9, 2015 Sheet 2 of 5 US 9,053,199 B2

SCRIPT FILE
REPOSITORY
0

29G. 2

l

US 9,053,199 B2

Sheet 3 of 5

Jun. 9, 2015

U.S. Patent

g Dt

— vZe (443 —
9zE (sINr-0av (SINOISNZLX3| | (SINI-ON1d 0cE JHIYD
00E Y35MOYE g3IM)
L ETE
S1€ ¥3d10d) AHOLDINIG
{ ﬂ \, >
) RETERENEILY
7T€ 3Svaviva EE —
8TE NdD
,mmm\so% mm\sk FTE yI43aNTY IR |
8O0F ¥ANIVLEO | | FOE HOLYIOT| | o iy NMN w_\m.wmwmm<
T4 1d1¥DS T4 1dI1¥DS .

T0€ 30V4HdLNI H3SN w

401A30 ONILNdNGD

vzoz —

U.S. Patent Jun. 9, 2015 Sheet 4 of 5

US 9,053,199 B2

400

ACCESS WEB DOCUMENT

402

™

406

OBTAIN

SCRIPT FILE RECOGNIZ 404
USING UNIQUE

LOCATION NO IDENTIFIER/
IN SRC VERSION?

ATTRIBUTE

ﬁ

YES
A 4

OBTAIN UNIQUE IDENTIFIER/VERSION FROM
WEB DOCUMENT

|

‘,\/

412

414

SCRIPT FILE IN
COMPUTING
DEVICE?

NO
y

OBTAIN SCRIPT FILE FROM REMOTE REPOSITORY |

416

~

OBTAIN SCRIPT
FILE FROM
COMPUTING
DEVICE USING
UNIQUE
IDENTIFIER/
VERSION

|

USING UNIQUE {DENTIFIER/VERSION

29G. 4

US 9,053,199 B2

Sheet 5 of 5

Jun. 9, 2015

U.S. Patent

S DLE

1S
ITNAOIN
SNOILVIOINNIWWOD

. . .

9 : !

0TS
m ITINAO (O/1) LNdLNO/LNdNI w

T 1

905 v0S 08
35VHOI1S v1vd AdOWAN 40SS3004d

91S vT1S
301A3d 40IA3d

005 —*

US 9,053,199 B2

1

UNIQUELY IDENTIFYING SCRIPT FILES BY
APPENDING A UNIQUE IDENTIFIER TO A
URL

BACKGROUND

A typical web page designer uses a variety of techniques to
indicate how a web page should look and feel. For instance, a
web page designer uses a markup language to design the look
and feel of the web page and then uses one or more scripts,
style sheets, images, etc., to indicate any actions or effects for
the web page, such as text effects, scrolling marquees, sliding
windows, animation, and the like. There are many commonly
used files and libraries, e.g., JAVASCRIPT® files and librar-
ies, Cascaded Style Sheets (CSS), image files and libraries,
icon files and libraries, and so forth, which can be used when
designing a web page.

SUMMARY

In general, one or more implementations of the subject
matter disclosed herein are directed to technology that uses a
script file repository. The technology includes a web docu-
ment accessor that is configured to access a web document.
The web document includes a uniform resource locator
(URL) for a script file and a unique identifier for the script file
appended to the URL. The unique identifier uniquely identi-
fies the script file. The script file is included in a script file
repository. The technology also includes a script file locator
that is configured to determine whether the script file associ-
ated with the unique identifier is located at a computing
device or at the script file repository. Furthermore, the tech-
nology includes a script file obtainer that is configured to
obtain the script file associated with the unique identifier from
the computing device in response to determining whether the
script file associated with the unique identifier is located at the
computing device or at the script file repository.

This Summary is submitted with the understanding that it
will not be used to interpret or limit the scope or meaning of
the claims. This Summary is not intended to identify key
features or essential features of the claimed subject matter,
nor is it intended to be used as an aid in determining the scope
of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an example script file repository accord-
ing to one or more implementations described herein.

FIG. 2 is a high-level block diagram of a computing envi-
ronment suitable for one or more implementations described
herein.

FIG. 3 is a high-level block diagram of a computing device
according to one or more implementations described herein.

FIG. 4 is a flowchart of a method for utilizing a script file
repository according to one or more implementations
described herein.

FIG. 5is ahigh-level block diagram illustrating an example
computer system according to one or more implementations
described herein.

The Detailed Description references the accompanying
figures. In the figures, the left-most digit(s) of a reference
number identifies the figure in which the reference number
first appears. The same numbers are used throughout the
drawings to reference like features and components.

DETAILED DESCRIPTION

This disclosure describes a script file repository where
designers can access script files that can be used to enrich the

35

40

45

65

2

look and feel of a web page. The script files add logic effects
to the web page such as sliding windows, animation, text
effects, colors, banners, form validation, scrolling images,
partial-submits (via Asynchronous JAVASCRIPT® (AJAX)),
and the like. The script file repository according to one or
more implementations stores one or more script files, for use
in designing the web pages, for example. The script file
repository assigns one or more unique identifiers to the one or
more script files. The unique identifier can be appended to the
uniform resource locator (URL) for the script file. Optionally,
the script file repository assigns a version number for the
script file that specifies a particular version of the script file.
Alternatively, the script author designates the version for the
script file. The script file repository makes the unique identi-
fiers and optionally the version numbers available to web
document authors. Script files can be obtained from the script
file repository using the unique identifier.

This disclosure also describes a computing device that is
configured to access a web document that includes a refer-
ence to one or more script files. The web document includes
the URL for a script file. The web document also includes a
unique identifier for the script file appended to the URL. The
author of a web document receives the unique identifier for
the script file from the script file repository. In one or more
implementations, the unique identifier is appended to a src
attribute after a # (or hash) character of a <script> tag in the
web document. Optionally, a version number or version range
is appended to the unique identifier.

If the computing device recognizes the use of a unique
identifier for the script file, the computing device obtains the
unique identifier from the web document, and uses it to
retrieve the desired script from a script repository. The com-
puting device determines whether the script file associated
with the unique identifier is located on the computing device
itself or at a remote repository. If the script file is located on
the computing device, the computing device uses the unique
identifier to obtain the script file from itself locally. If the
script file is located in a remote script file repository, the
computing device obtains the script file from the remote script
file repository using the unique identifier.

If the computing device does not recognize the unique
identifier, the computing device obtains the script file location
information from the address indicated in the src attribute of
the <script> tag in the URL in the web document. The com-
puting device obtains the script file from the location indi-
cated in the src attribute. This provides backward compatibil-
ity with computing devices that do not recognize the unique
identifier. This also provides backward compatibility with
computing devices that cannot find the script in a repository
or locally on the computing device.

Example Script File Repository

FIG. 1 illustrates an example script file repository 100
according to one or more implementations, from which a
computing device can access a script file using a unique
identifier and optionally a version range or number. In the
illustrated example, a script file input 101 is communicatively
coupled to a script checking module 102. The script checking
module 102 is communicatively coupled to an assigning
module 104, which is communicatively coupled to an
appending module 106. The appending module 106 is com-
municatively coupled to a script file/unique identifier storage
108. The script file/unique identifier storage 108 is commu-
nicatively coupled to a script file output 110 as well as script
file unique identifier/version output 112.

In one or more implementations, communicative coupling
among the script file input 101, the script checking module
102, the assigning module 104, the appending module 106,

US 9,053,199 B2

3

script file/unique identifier storage 108, the script file output
110, and the unique identifier/version output 112 is a wired
connection or a wireless connection. After reading the
description herein, a person of skill in the relevant art will be
able to implement the communicative coupling.

In one or more implementations, the script file input 101
utilizes any suitable manual data input technology. Examples
of manual data input technology include a mouse or a key-
board on a laptop or desktop computer. Other examples
include or a touch screen on a tablet computer. In one or more
implementations, the script file input 101 is automated and
script files are submitted to the script file input 101 electroni-
cally, via the internet, for example. The submitter may use
hypertext transfer protocol (HTTP), File Transfer Protocol
(FTP), or other suitable networking protocol to submit a
script file to the script file input 101.

In one or more implementations, the script checking mod-
ule 102 obtains the script file provided by a script file author/
submitter via the script file input 101. The script checking
module 102 performs checks on the script file. For instance,
the script checking module 102 determines whether a script
file that is being submitted to the script file repository 100 is
free from malware, such as viruses, worms, etc. The script
checking module 102 also determines whether the submitter
of' the script file is an authorized submitter. The script check-
ing module 102 performs other checks as appropriate on the
submitted script files and then determine whether and/or
which script files are approved for inclusion in the script file
repository 100. In one or more implementations, the script
checking module 102 checks to see if the version being sub-
mitted has already been submitted, and if so, prompts the
submitter as to whether he or she wants to replace the existing
version.

If approved for inclusion in the script file repository 100,
the assigning module 104 assigns a unique identifier to each
of the approved script files. In some implementations, the
assigning module 104 assigns a version number or a range of
version numbers. Alternatively, the script author designates
the version for the script file. The script file will be identified
by the unique identifier so that there are no collisions between
script files.

For one or more implementations, one unique identifier is
assigned to a script file such that each script file in the script
file repository 100, and other script file repositories imple-
mented in accordance with the technology described herein,
has its own unique identifier. In implementations in which the
script files are the same, but the script file versions are differ-
ent, the unique identifier is the same but a version number is
appended to the unique identifier. That is, several script files
may have the same unique identifier, but the further-appended
version number distinguishes the script files from each other.

In one or more implementations, a script file repository 100
administrator selects a unique identifier for a script file and
manually inputs the unique identifier into the assigning mod-
ule 104. For example, the administrator selects a unique iden-
tifier of “0001” for the first approved script file, a unique
identifier of “0002” for the second approved script file,
unique identifier of “0003” for the third approved script file,
and so forth. After reading the description herein a person of
ordinary skill in the relevant art will be able to implement the
assigning module 104.

The appending module 106 appends the assigned unique
identifier to the approved script file. According to one or more
implementations, the appending module 106 appends the
unique identifier to a src attribute in the <script> tag in the
URL for the script file. In implementations in which the
assigning module 104 assign a version number or a version

10

15

20

25

30

35

40

45

50

55

60

65

4

range to an approved script file, the appending module 106
appends the version number or version range to the unique
identifier.

The script file/unique identifier storage 108 makes known,
to the public, for example, that script files are available from
the script file repository 100 and that script files can be
accessed from the script file/unique identifier storage 108
using the URL of the script file repository 100 plus the unique
identifier. Requested script files are via the script file output
110. Requested unique identifiers/versions are via the unique
identifiers/versions output 112. The script file script file/
unique identifier storage 108 is any suitable storage device
that is capable of providing script files and script file unique
identifiers, to the public, for example, when requested.

In one or more implementations, a non-authorized user
browses the repository 100 looking for one or more scripts of
interest. The script repository 100 is readable using protocols
such as file transfer protocol (FTP), hypertext transfer proto-
col (HTTP), a combination of HTTP and Secure Sockets
Layer/Transport Layer Security (HTTPS), or the like. Other
mechanisms for making known to the public that script files
are available from the script file repository 100 include pub-
lishing a catalog of sorts as a Resource Description Frame-
work Site Summary (RSS) feed and/or sending out email
messages to mailing lists alerting interested parties that a new
script or version of a script is available.

Additionally, the script file repository 100 is implemented
using hardware, firmware, and/or any combination thereof
with software. This includes implementation of the script file
input 101, the script checking module 102, the assigning
module 104, the appending module 106, the script file/unique
identifier storage 108, the script file output 110, and the
unique identifier/version output 112.

Example Computing Environment

FIG. 2 is a high-level block diagram of an example suitable
computing environment 200 for implementing the technol-
ogy described herein. The illustrated computing environment
200 includes clients 202A and 202B, servers 204 A and 2048,
and the script file repository 100 communicatively coupled to
each other and to the internet 206. The clients 202A and 202B
are communicatively coupled to the internet 206 via links
208A and 208B, respectively, servers 204A and 204B are
communicatively coupled to the internet 206 via links 208C
and 208D, respectively, and the script library 100 is commu-
nicatively coupled to the internet 206 via link 208E.

In one or more implementations, clients 202A and 202B
are computing devices, and as such are operated by a user to
design web pages using script files as well as by web docu-
ment authors to prepare web documents. The illustrated com-
puting devices are desktop computers. However, laptop com-
puters, notebook computers, tablet computers, smart phones,
and the like, are also suitable computing devices.

The servers 204 A and 2048 are intended to represent web
servers, file servers, and the like.

The internet 206 is intended to represent a wired and/or
wireless distributed communication mechanism.

The links 208A, 2088, 208C, 208D, and 208E are intended
to represent wired and/or wireless connections that exist
between the clients 202A and 202B, servers 204 A and 204B,
and script file repository 100.

Example Computing Device

FIG. 3 illustrates the example computing device 202A in
more detail. In the illustrated example, the computing device
202A includes a web browser 300. The illustrated web
browser 300 includes a user interface 301, a web document
accessor 302, a parser 304, a script file locator 306, a script file
obtainer 308, a web browser database 312, a directory 313 a

US 9,053,199 B2

5

renderer 314, a folder 315, a file interpreter 316, and a graph-
ics processing unit (GPU) 318. The illustrated computing
device 202A also includes a cache 320, one or more plug-ins
322, one or more browser extensions 324, and one or more
add-ins 326.

The illustrated web browser 300 is used to access a web
document and render a web page according to the information
in the web document. The user interface 301, web document
accessor 302, parser 304, script file locator 306, script file
obtainer 308, web browser database 312, renderer 314, file
interpreter 316, and graphics processing unit (GPU) 318
facilitate accessing the web document and rendering the web
page.

The illustrated user interface (UT) 301 provides an interface
between a user and the computing device 202A. The UI 301
processes inputs from a keyboard, a mouse, a touch pad,
microphone, or other user input using known techniques.

The illustrated web document accessor 302 is configured to
access a web document. The web document has a URL for a
script file, a unique identifier for the script file appended to the
URL, and/or a version range or number for the script file
appended to the unique identifier. In one or more implemen-
tations the web document accessor 302 uses hypertext trans-
fer protocol (HTTP), File Transfer Protocol (FTP), or other
suitable networking protocol to access a web document.

The illustrated parser 304 is configured to recognize the
URL, the unique identifier and/or version range or number for
the script file included in the web document. The parser 304
also is configured to obtain the URL, unique identifier, and/or
a version range or number from the web document. In one or
more implementations, the parser is configured to parse an
HTML, Extensible Markup Language (XML), and/or other
types of web documents to extract the URL, unique identifier,
and/or a version range or number from the web document. In
one implementation, the parser 304 includes a script inter-
preter, which interprets, and/or extracts, the script in the script
file. The script files are JAVASCRIPT files, Cascaded Style
Sheets, and the like. The parser 304 recognizes the URL along
with the unique identifier appended to the <script>tag in the
URL after the # (hash) character in the src attribute. In one or
more implementations, the parser 304 uses known techniques
to extract the URL along with the unique identifier/version.

The illustrated script file locator 306 is configured to deter-
mine whether the script file associated with the unique iden-
tifier and/or a version range or number is physically located at
the computing device 202A and/or at the script file repository
100. In one or more implementations, the script file is located
in the directory 313 or the folder 315.

In one or more implementations, the script file is built into
the web browser 300. The script file is part of the executable
file but is not hard coded into the scripting language that the
script file is written in. Instead, the script file is a data file in
the web browser 300 (e.g., stored in the cache 320 or the web
browser database 312) and is able to be parsed by the parser
304.

In one or more implementations, the script file is a data file
that is included in the web browser 300°s program installation
directory. In one or more implementations, the script file is
encrypted, to prevent a virus from altering the script file, for
example.

Alternatively, the script file is stored in the remote script
file repository 100 described with reference to FIG. 1. In one
or more implementations, the web browser 300 is user-con-
figurable such that a user can select one or more specific script
file repositories from which to access a script file. The script
file locator 306 is configured to determine that the script files
are located at those specific script file repositories.

10

15

20

25

30

35

40

45

50

55

60

65

6

Alternatively, one or more specific script file repositories
are hard-coded into the web browser 300. The script file
locator 306 is configured to determine that the script files are
located at the specific script file repositories that are hard-
coded into the web browser 300.

The illustrated script file obtainer 308 is configured to
obtain a script file from the computing device 202A. The
computing device 202A decides how to obtain the script file
based on the information in the obtained web document and
the computing device 202A’s specific capabilities. In one or
more implementations, the script file obtainer 308 obtains the
script file from the script file repository 100 using the URL,
unique identifier, and/or version range/number.

The computing device 202A also is configured to ignore
the unique identifier and/or version. In one or more imple-
mentations, the computing device 202A obtains the script file
from the location specified in the <script> tag in the URL.

The location from which the script file obtainer 308 obtains
the script file from also is configurable by a user of the
computing device 202A. There is a menu option on the user
interface 301 that allows the user to select the location from
which to obtain the script file.

In implementations in which the script file is built into the
web browser 300 on the computing device 202A, the script
file is parsed by the parser 304 and obtained by the script file
obtainer 308 when requested. In another implementation,
commonly used script files can be obtained beforehand and
stored on local storage by computing device. This local stor-
age can be in addition to caching of obtained script, so that
even first accesses to a script are performed quickly.

The illustrated web browser database 312 is configured to
store at least one script file in accordance with an implemen-
tation. For example, the web browser database 312 stores the
script file identified by <script type="“test/JavaScript”
src="Exhibit B—Sam plelJavaScri pt.js”#jsid=34F9A6B2-
2A6D-3356-7D73-26395FA88E71&v2.3”></script>.
Accordingly, the script file can be request from a script
repository, which may be located at the same server as speci-
fied by the src attribute, or a server other than specified by the
src attribute, using unique identifier 34F9A6B2-2A6D-3356-
7D73-26395FA88E71&v2.3. Alternatively, if support is not
available for script repositories, the URL specified by the
“src” attribute can be used to retrieve the script file as would
normally occur, since portions of a URL including and after
the hash tag are usually not sent to a server.

The illustrated directory 313 is any module configured to
store, either virtually or physically, computer files. In one or
more implementations, the directory 313 stores a script file.

The renderer 314 handles rendering a web page, such as
displaying HTML documents, and/or Cascaded Style Sheets,
running scripts, responding to mouse and keyboard events,
etc.

The illustrated folder 315 is any module configured to
store, either virtually or physically, computer files. In one or
more implementations, the folder 315 stores a script file.

The illustrated file interpreter 316 interprets, and/or
extracts the script in a script file using techniques known to
persons of skill in the art. In one or more implementations, the
file interpreter 316 is a Rhino open source script engine, a V8
open source script engine, or a Narcissus open source script
engine.

The GPU 318 is used to speed up the rendering of images,
text, fonts, and so forth, of the computing device 202A.

The cache 320 is any suitable memory within the comput-
ing device 202 A capable of storing a script file. For example,
in one or more implementations, the cache 320 is a flash drive,
a thumb drive, a secure digital memory card, or the like,

US 9,053,199 B2

7

plugged into the computing device 202A. As depicted, the
cache 320 is a hard disk that is physically located in or is
otherwise physically and communicatively wired directly to
the computing device 202A. Alternatively, the cache 320 is
part of a Data Persistence module in the web browser 300.

Some or all of the functionality of web browser 300 is
embedded in the plug-in 322, the extension 324, or the add-in
326. For example, the plug-in 322, the extension 324, or the
add-in 326 is configured to access a web document that has a
unique identifier for a script file, recognize the unique iden-
tifier, obtain the unique identifier from the web document,
determine whether the script file associated with the unique
identifier is located on the computing device 202A or the
remote script file repository 100, obtain the script file from the
computing device 202 A, obtain the script file from the remote
script file repository 100, and/or obtain the script file from the
location specified in the src attribute of the URL provided in
the web document.
Example Web Documents

The following is an example web document according to
an implementation. The example web document is a hyper-
text markup language (HTML) document. However, other
web documents are suitable for implementing the technology
described herein. Although the below web documents and
their descriptions include hyperlinks and/or other forms of
browser-executable codes, the hyperlinks and/or other forms
of browser-executable codes are not intended to be active
links.

<html>
<body>
<script type="test/javascript” src="Exhibit A -
SampleJavaScript.js#34F9A6B2-2A6D-3356-7D73-
26395FA88E71&v2.3”></script>
<button onclick="foo()”>Say Hello</button>
</body>
</html>

The URL in the above example web document is Exhibit
A—SampleJavaScriptjs. The unique identifier is
34F9A6B2-2A6D-3356-7D73-26395FA88E71 and s
appended after the # (hash) character in the URL. The
optional version is 2.3, indicated by v2.3 is appended after the
unique identifier. The resulting script file is identified as
<script type="test/JavaScript” src="Exhibit
A—SampleJavaScript.js”#jsid=34F9A6B2-2A6D-3356-
7D73-26395FA88E71&v2.3”></script>.

The following is an example web document according to
an alternative implementation of the technology described
herein.

<html>
<body>
<script type="test/javascript” src="Exhibit A -
SampleJavaScript.js#34F9A6B2-2A6D-3356-7D73-
26395FA88E71&v2.3+LEQ4”></script>
<button onclick="foo()”>Say Hello</button>
</body>
</html>

The URL in this alternative example also is Exhibit
A—SampleJavaScript,js. This is the same script file thus it
has the same unique identifier. The version number for the
script file has changed to a range between version 2.3 and 4.
As such the unique identifier 34F9A6B2-2A6D-3356-7D73-
26395FA88E71 remains appended after the # (hash) charac-
ter. The optional version range has changed and is a version

30

35

40

45

50

55

60

8

that is greater than version 2.3 and less than or equal to
version 4, and the nomenclature vGT2.3+LEQ4 is used to
indicate the version range. GT represents greater than and
LEQ represents less than or equal to. The resulting script file
is identified as <script type="test/JavaScript” src="Exhibit
A—SampleJavaScript.js”#jsid=34F9A6B2-2A6D-3356-
7D73-26395FA88E71&v2.3+LEQ4”></script>.

Other example web documents are written using Exten-
sible Markup Language (XML), or other suitable language.
Alternative web documents also include an image file, which
includes a tag such as . An example
Cascaded Style Sheet (CSS) according to an implementation
is embedded in a web document using a tag such as <link
rel="stylesheet” type="text/css” href="shoemakerstyle.css”/
>[Although web documents described above include only a
few lines, a script file can have tens, hundreds, and even
thousands of lines.

Of course, other files can be stored in the script file reposi-
tory 100. After reading the description herein a person of
ordinary skill in the art will be able to implement a script file
repository using other file types.

Example Method for Obtaining a Script File

FIG. 4 illustrates a method 400 implemented by a comput-
ing device, such as the computing device 202A illustrated in
FIG. 3, according to the technology described herein. For
example, the web document accessor 302 accesses a web
document that has a URL and a unique identifier for a script
file. The parser 304 recognizes the URL and unique identifier
and obtains them from the web document. The script file
locator 306 determines where the script file is located, locally
on the computing device, at the script file repository 100, or at
a location designated by the URL in the web document. The
script file obtainer 308 obtains the script file from the location
specified by the script file locator 306, such as from the web
browser database 312, the cache 320, the script file repository
100, or other location specified by the URL in the web docu-
ment.

In a block 402 the computing device 202A accesses a web
document. In one or more implementations, the web docu-
ment accessor 302 accesses a web document that has a URL
and a unique identifier and/or a version for a script file.

In a block 404, the computing device 202A determines
whether it recognizes the unique identifier and/or a version in
the web document. In one or more implementations, the
parser 304 recognizes the URL and unique identifier and
obtains them from the web document.

Optionally, computing device 202A also determines
whether it recognizes a version appended to the unique iden-
tifier. In one or more implementations, either the parser 304
recognizes the unique identifier and/or the version, or it does
not recognize the unique identifier and/or the version.

If the parser 304 does not recognize the unique identifier,
then the method 400 proceeds to block 406 where the script
file obtainer 308 obtains the script file from the address speci-
fied in the src attribute in the <script> tag in the URL. For
instance, in the event that the computing device 202A does
not have the capability of recognizing the unique identifier
and/or version number, the script file obtainer 308 will still be
able to obtain the script file from the location specified in the
URL.

If in block 404 the computing device 202 A does recognize
the unique identifier, then the method 400 proceeds to block
412 in which the parser 304 obtains the unique identifier
and/or version from the web document.

In block 414, the computing device 202A determines
whether the script file associated with the unique identifier
and/or version, is physically located at the computing device

US 9,053,199 B2

9

202A. In one or more implementations, the script file locator
306 determines whether the script file is located in the web
browser database 312 or in the cache 320. Alternatively, the
script file locator 308 determines whether the script file is
located in the directory 313 or the folder 315.

If the script file is located on the computing device 202A,
the method 400 proceeds to block 416 in which the computing
device 202A obtains the script file associated with the unique
identifier, and/or version, from the computing device 202A.
In one or more implementations, the script file obtainer 308
obtains the script file from the web browser database 312 or
the cache 320.

Ifin block 414 the computing device 202A determines that
the script file associated with the unique identifier is physi-
cally located at the remote script file repository 100, the
method 400 proceeds to block 418 in which the script file
obtainer 308 obtains the script file associated with the unique
identifier and/or version from the script file repository 100.

The method 400 is illustrated as a collection of blocks in a
logical flow graph, which represents a sequence of operations
that can be implemented in mechanics alone or a combination
with hardware, software, and/or firmware. In the context of
software/firmware, the blocks represent instructions stored
on one or more computer-readable storage media that, when
executed by one or more processors, perform the recited
operations. Note that the order in which the processes are
described is not intended to be construed as a limitation, and
any number of the described process blocks can be combined
in any order to implement the processes or an alternate pro-
cess. Additionally, individual blocks may be deleted from the
processes without departing from the spirit and scope of the
subject matter described herein.

Example Computing Environment

FIG. 5is ahigh-level block diagram illustrating an example
computer system 500 suitable for implementing the script file
repository 100 of FIG. 1, clients 202 A and 202B, and servers
204A, 204B of FIG. 2. In certain aspects, the computer sys-
tem 500 is implemented using hardware or a combination of
software and hardware.

The illustrated computer system 500 includes a processor
502, amemory 504, and data storage 506 coupled to a bus 508
or other communication mechanism for communicating
information. An input/output (I/O) module 510 is also
coupled to the bus 508. A communications module 512, a
device 514, and a device 516 are coupled to the I/O module
510.

The processor 502 is a general-purpose microprocessor, a
microcontroller, a Digital Signal Processor (DSP), an Appli-
cation Specific Integrated Circuit (ASIC), a Field Program-
mable Gate Array (FPGA), a Programmable Logic Device
(PLD), a controller, a state machine, gated logic, discrete
hardware components, or any other suitable entity that can
perform calculations or other manipulations of information.
The processor 502 is used for processing information. The
processor 502 can be supplemented by, or incorporated in,
special purpose logic circuitry.

The memory 504 is Random Access Memory (RAM), a
flash memory, a Read Only Memory (ROM), a Program-
mable Read-Only Memory (PROM), an Erasable PROM
(EPROM), registers, a hard disk, a removable disk, a CD-
ROM, a DVD, or any other suitable storage device used for
storing information, a computer program, and/or instructions
to be executed by the processor 502. They memory 504 stores
code that creates an execution environment for one or more
computer programs used to implement technology described
herein. In implementations in which the computing device

20

40

45

55

10

202A obtains a script file from one or more of its local caches,
the computing device 202A obtains the script file from the
memory 504.

Unless indicated otherwise by the context, a module refers
to a component that is hardware, firmware, and/or a combi-
nation thereof with software (e.g., a computer program.) A
computer program as discussed herein does not necessarily
correspond to a file in a file system. A computer program can
be stored in a portion of a file that holds other programs or data
(e.g., one or more scripts stored in a markup language docu-
ment), in a single file dedicated to the program in question, or
in multiple coordinated files (e.g., files that store one or more
modules, subprograms, or portions of code). A computer
program can be deployed to be executed on one computer or
on multiple computers that are located at one site or distrib-
uted across multiple sites and interconnected by a communi-
cation network.

The instructions are implemented in one or more computer
program products, i.e., one or more sets of computer program
instructions encoded on one or more computer readable
media for execution by, or to control the operation of, the
computer system 500, and according to any method well
known to those of skill in the art. The term “computer-read-
able media” includes computer-storage media. For example,
computer-storage media includes, but are not limited to, mag-
netic storage devices (e.g., hard disk, floppy disk, and mag-
netic strips), optical disks (e.g., compact disk (CD) and digital
versatile disk (DVD)), smart cards, flash memory devices
(e.g., thumb drive, stick, key drive, and SD cards), and vola-
tile and non-volatile memory (e.g., random access memory
(RAM), read-only memory (ROM))

The data storage 506 is a magnetic disk or optical disk, for
example. The data storage 506 functions to store information
and instructions to be used by the processor 502 and other
components in the computer system 500.

The bus 508 is any suitable mechanism that allows infor-
mation to be exchanged between components coupled to the
bus 508. For example, the bus 508 is transmission media such
as coaxial cables, copper wire, and fiber optics, optical sig-
nals, and the like.

The /O module 510 can be any input/output module.
Example input/output modules 510 include data ports such as
Universal Serial Bus (USB) ports.

The communications module 512 includes networking
interface cards, such as Ethernet cards and modems.

The device 514 is an input device. Example devices 514
include a keyboard, a pointing device, a mouse, or a trackball,
by which a user can provide input to the computer system 500.

The device 516 is an output device. Example devices 516
include displays such as cathode ray tubes (CRT) or liquid
crystal display (LCD) monitors that display information,
such as web pages, for example, to the user.

Implementations are described herein with reference to
illustrations for particular applications. It should be under-
stood that the implementations are not intended to be limiting.
Those skilled in the art with access to the teachings provided
herein will recognize additional modifications, applications,
and implementations within the scope thereof and additional
fields in which the technology would be of significant utility.
In the above description of example implementations, for
purposes of explanation, specific numbers, materials, con-
figurations, and other details are set forth in order to better
explain implementations as claimed. However, it will be
apparent to one skilled in the art that the claims may be
practiced using details different than the examples described

US 9,053,199 B2

11

herein. In other instances, well-known features are omitted or
simplified to clarify the description of the example imple-
mentations.

As used in this application, the term “or” is intended to
mean an inclusive “or” rather than an exclusive “or.” That is,
unless specified otherwise or clear from context, “X employs
A or B” is intended to mean any of the natural inclusive
permutations. That is, if X employs A; X employs B; or X
employs both A and B, then “X employs A or B” is satisfied
under any of the foregoing instances. In addition, the articles
“a” and “an” as used in this application and the appended
claims should generally be construed to mean “one or more,”
unless specified otherwise or clear from context to be directed
to a singular form.

In the claims appended herein, the inventor invokes 35
U.S.C. §112, paragraph 6 only when the words “means for” or
“steps for” are used in the claim. If such words are not used in
a claim, then the inventor does not intend for the claim to be
construed to cover the corresponding structure, material, or
acts described herein (and equivalents thereof) in accordance
with 35 U.S.C. §112, paragraph 6.

What is claimed is:

1. A computing device comprising:

aweb document accessor configured to access a web docu-

ment, the web document having a uniform resource
locator (URL) for a script file and a unique identifier for
the script file appended to the URL,
aparser configured to recognize the unique identifier and to
obtain the unique identifier from the web document;

ascript file locator configured to use the unique identifier to
determine whether the script file is located at a same
server as that specified by the URL for the script file, or
that the script file is located in a script file repository
located at a different server from that specified by the
URL for the script file, the script file repository compris-
ing scripts for a plurality of different web documents;
and

ascript file obtainer configured to obtain the script file from

the script file repository when the script file locator
determines the script file is located in the script file
repository.

2. A computing device according to claim 1, further com-
prising a cache wherein the script file obtainer is further
configured to obtain the script file associated with the unique
identifier from the cache in response to a determination that
the script file associated with the unique identifier has been
previously obtained from the script file repository, and a copy
is located in the cache.

3. A computing device according to claim 1, further com-
prising a web browser database wherein the script file
obtainer is further configured to obtain the script file associ-
ated with the unique identifier from the web browser database
in response to a determination that the script file associated
with the unique identifier has been previously obtained from
the script file repository, and a copy is located in the web
browser database.

4. A computing device according to claim 1, wherein:

the web document accessor is further configured to access

a web document having a script file version number
appended to the unique identifier, and wherein the ver-
sion identifies a version of the script file,

the parser is further configured to recognize the version

number and to obtain the version from the web docu-
ment, and

the script file obtainer is further configured to obtain the

script file associated with the version from the script file
repository.

10

15

20

25

30

35

40

45

50

55

60

65

12

5. A computing device according to claim 1, wherein the
parser is further configured to recognize the unique identifier
in a <script> tag following a# (hash) character.

6. A computing device according to claim 1, wherein the
web document also includes a version for the script file
appended to the unique identifier, and wherein the web docu-
ment accessor is further configured to access the web docu-
ment using the version for the script file.

7. A computing device according to claim 1, wherein when
the unique identifier is unrecognized by the parser, the script
file obtainer obtains the script file using an address indicated
in a src attribute of a <script> tag in the web document.

8. A method, implemented by a computing device config-
ured to utilize a script file repository, the method comprising:

accessing, by the computing device, a web document, the

web document having a uniform resource locator (URL)
for a script file, wherein the web document also includes
a unique identifier for the script file appended to the
URL,;

recognizing, by the computing device, the unique identifier

appended to the URL of the script file;

obtaining, by the computing device, the unique identifier

from the web document;

determining, by the computing device and based on the

unique identifier, whether the script file is located at a
same server as that specified by the URL for the script
file, or that the script file is located at a script file reposi-
tory located at a different server from that specified by
the URL for the script file; and

in response to determining that the script file is located at

the script file repository, obtaining, by the computing
device, the script file from the script file repository using
the unique identifier.

9. A method according to claim 8, further comprising
executing, by the computing device, the script included in the
script file.

10. A method according to claim 8, wherein the unique
identifier is appended to the URL after a# (hash) character.

11. A method according to claim 8, wherein in response to
the determining, obtaining, by the computing device, the
script file from a cache on the computing device using the
unique identifier in response to a determination that the script
file associated with the unique identifier has been previously
obtained from the script file repository, and a copy is located
in the cache.

12. A method according to claim 8, wherein in response to
the determining, obtaining, by the computing device, the
script file from a web browser database on the computing
device using the unique identifier in response to a determina-
tion that the script file associated with the unique identifier
has been previously obtained from the script file repository,
and a copy is located in the web browser database.

13. A method according to claim 8, wherein the web docu-
ment also includes a version for the script file appended to the
unique identifier, and wherein accessing the web document
by the computing device further includes accessing the ver-
sion for the script file.

14. A method according to claim 8, wherein the script file
repository includes a Cascaded Style Sheet (CSS), and
wherein the unique identifier uniquely identifies the CSS.

15. A method according to claim 8, wherein the script file
repository includes an image file, and wherein the unique
identifier uniquely identifies the image file.

16. A method according to claim 8, wherein the script file
is included in a browser extension.

17. A method according to claim 8, wherein the script file
is included in a browser executable code.

US 9,053,199 B2

13

18. A method according to claim 9, wherein the script file
is included in a plug-in.
19. A method according to claim 9, wherein the script file
is included in a browser add-in.
20. A method implemented by a computing device config-
ured to utilize a script file, the method comprising:
accessing, by the computing device, a web document, the
web document having a uniform resource locator (URL)
for a script file, wherein the web document also includes
a unique identifier for the script file appended to the
URL,;

determining, by the computing device, that the computing
device recognizes the unique identifier appended to the
URL of the script file;

determining, by the computing device and based on the
unique identifier, whether the script file is located at a
same server as that specified by the URL for the script
file, or that the script file is located at a script file reposi-
tory located at a different server from that specified by
the URL for the script file; and

in response to the determining that the script file is located

at the script file repository located at the different server
from that specified by the URL for the script file, obtain-
ing, by the computing device, the script file from the
script file repository using the unique identifier.

21. A method according to claim 20, wherein accessing the
web document by the computing device further includes
accessing, by the computing device, a version for the script
file, wherein the version for the script file is appended to the
unique identifier.

22. A method according to claim 20, wherein when the
unique identifier is unrecognizable to the computing device,
obtaining the script file using the address included inthe URL
includes obtaining, by the computing device, the script file
using an address indicated in a src attribute of a <script> tag
in the web document.

5

20

25

30

14

23. One or more non-transitory computer-readable media
storing processor-executable instructions that when executed
cause one or more processors to perform a method compris-
ing:

accessing a web document, the web document having a

uniform resource locator (URL) for a script file, wherein
the web document also includes a unique identifier for
the script file appended to the URL;

determining that the processor recognizes the unique iden-

tifier;
determining, based on the unique identifier, whether the
script file is located at a same server as that specified by
the URL for the script file, or that the script file is located
at a script file repository located at a different server
from that specified by the URL for the script file; and

in response to the determining that the script file is located
at the script file repository located at the different server
from that specified by the URL for the script file, obtain-
ing the unique identifier from the web document and
obtaining the script file from the script file repository
using the unique identifier.

24. One or more non-transitory computer-readable media
according to claim 23, further comprising in response to the
determining, obtaining the script file using an address indi-
cated in the URL.

25. One or more non-transitory computer-readable media
according to claim 23, wherein when the unique identifier is
unrecognizable to the computing device, obtaining the script
file using the address included in the URL includes obtaining
the script file using the address indicated in a src attribute of
a <script> tag in the web document.

26. One or more non-transitory computer-readable media
according to claim 23, wherein the unique identifier is
appended to the URL after a # (hash) character.

#* #* #* #* #*

